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Abstract 8 

Studies assessing the relationship between high-level meaning and low-level image salience on real-9 
world attention have shown that meaning better predicts eye movements than image salience. 10 
However, it is not yet clear whether the advantage of meaning over salience is a general phenomenon 11 
or whether it is related to center bias: the tendency for viewers to fixate scene centers. Previous 12 
meaning mapping studies have shown meaning predicts eye movements beyond center bias whereas 13 
saliency does not. However, these past findings were correlational or post-hoc in nature. Therefore, 14 
to causally test whether meaning predicts eye movements beyond center bias, we used an established 15 
paradigm to reduce center bias in free viewing: moving the initial fixation position away from the 16 
center and delaying the first saccade. We compared the ability of meaning maps and image salience 17 
maps to account for the spatial distribution of fixations with reduced center bias. We found that 18 
meaning continued to explain both overall and early attention significantly better than image salience 19 
even when center bias was reduced by manipulation. In addition, although both meaning and image 20 
salience capture scene-specific information, image salience is driven by significantly greater scene-21 
independent center bias in viewing than meaning. In total, the present findings indicate that the 22 
strong association of attention with meaning is not due to center bias. 23 

1 Introduction 24 

As we explore the visual world, our eyes move intelligently to prioritize the most important scene 25 
regions for fixation (Figure 1). Exactly how one scene region is prioritized over another remains an 26 
open question. Previous research using image saliency models has focused on the role of bottom-up, 27 
stimulus-driven processing on real-world attention allocation (Borji, Parks, & Itti, 2014; Borji, Sihite, 28 
& Itti, 2013; Harel, Koch, & Perona, 2006; Itti & Koch, 2001; Koch & Ullman, 1987). It is also well 29 
established that top-down factors related to viewing task can influence attentional selection processes 30 
(Buswell, 1935; Hayhoe & Ballard, 2005; Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Henderson, 31 
2007, 2017; Henderson & Hollingworth, 1999; Navalpakkam & Itti, 2005; Rothkopf, Ballard, & 32 
Hayhoe, 2016; Tatler, Hayhoe, Land, & Ballard, 2011; Yarbus, 1967). What has been less clear is 33 
how the intrinsic semantic properties of a scene might influence eye movements and attention during 34 
scene viewing. 35 

To investigate this issue, Henderson and Hayes (2017) introduced the concept of meaning 36 
maps. In the same way that saliency maps represent the spatial distribution of contrasts in image 37 
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features, meaning maps capture the spatial distribution of semantic information in real-world scenes. 38 
In studies directly comparing meaning maps and saliency maps, meaning has been found to be a 39 
significantly better predictor of visual attention than image salience. This advantage for meaning over 40 
salience was observed across viewing tasks such as aesthetic judgment and memorization (Henderson 41 
& Hayes, 2017, 2018), scene description and action description (Henderson, Hayes, Rehrig, & 42 
Ferreira, 2018; Rehrig, Peacock, Hayes, Henderson, & Ferreira, 2020), and visual search (Hayes & 43 
Henderson, 2019). These results have also been obtained using viewing tasks that do not require 44 
semantic analysis of the scene, such as counting bright, physically salient scene regions (Peacock, 45 
Hayes, & Henderson, 2019a), visual search for arbitrarily placed letter targets (Hayes & Henderson, 46 
2019), and free viewing (Peacock, Hayes, Henderson,  2019b).   47 

A concern with past meaning mapping work is that viewing patterns tend to show central 48 
fixation bias, a tendency for viewers to concentrate fixations on the center of a picture ( Tatler, 2007; 49 
Bindemann, 2010; Parkhurst, Law, & Niebur, 2002; Rothkegal, Trukenbrod, Schütt, Wichmann, & 50 
Engbert, 2017; Tseng, Carmi, Cameron, Munoz, & Itti, 2009; van Renswoude, van den Berg, 51 
Raijmakers, & Visser, 2019). Central fixation bias can be problematic when comparing meaning and 52 
image salience if one property is more concentrated in the center of the scene. Studies have shown 53 
that image features tend to be more correlated with scene centers due to factors such as photographer 54 
bias (van Renswoude et al., 2019) and it is often suggested that there is more meaning in scene 55 
centers independent of saliency that could lead to a greater spurious influence of meaning on 56 
attention overall (but see: Tatler (2007) who showed that strategy and simple orienting response 57 
contribute to center bias independent of photographer bias and image features). Indeed, attempts have 58 
been made to disassociate center bias and image content by modifying meaning and saliency maps or 59 
removing central fixations post-hoc. For instance, Hayes and Henderson (2019) compared the center 60 
bias extracted from saliency models to their corresponding full models and found that center bias 61 
alone better explained fixation density than the full saliency models, whereas meaning continued to 62 
explain fixation density more than center bias alone. In another study, Henderson and Hayes (2017) 63 
excluded all central fixations from analyses and found that meaning was more correlated with 64 
fixation density than image salience. Finally, Peacock et al. (2019a) used meaning and saliency maps 65 
both containing center bias and without center bias and found the advantage of meaning over saliency 66 
regardless of center bias. Although these studies provided evidence that meaning predicts eye 67 
movements beyond scene centers, they were post-hoc and correlational in nature and thus were 68 
unable to causally dissociate meaning and central fixation bias. Furthermore, these studies changed 69 
the predictions of meaning and saliency maps to better account for central fixation bias rather than 70 
controlling eye movements themselves.  Ideally, we would prevent central fixation bias from 71 
happening in the first place in order to test its influence on the meaning advantage more directly. 72 

The goal of the present study, then, was to use an a priori manipulation designed to reduce or 73 
eliminate the central fixation bias from viewing patterns rather than changing the predictions of 74 
meaning and saliency maps. To do so, we adopted a method introduced by Rothkegal et al. (2017). 75 
This method involves two changes to common practice: (1) moving the initial fixation location from 76 
the center to a quasi-random location in the periphery of the scene, and (2) separating scene onset 77 
from the initiation of eye movements using a delayed “go” signal. To test whether our manipulation 78 
changed central fixation bias (and thus eye movements to meaning) relative to previous meaning 79 
mapping studies, we compared the current data to a previously published study that was identical 80 
except that it used central pretrial fixations (Peacock et al., 2019b). If scene centers favor meaning 81 
over image salience, then the central pretrial fixation used in Peacock et al. (2019b) could 82 
artifactually inflate the apparent relationship between meaning and attention. To test this hypothesis, 83 
the current study investigated whether meaning continues to outperform image salience when 84 
attention begins in the scene periphery rather than the center. 85 
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In summary, the current study sought to compare the relationships of meaning and image 86 
salience with eye movements under conditions in which central fixation bias is behaviorally 87 
controlled. To accomplish this goal, the initial fixation location was placed in the periphery of the 88 
scene and the viewing start time was delayed. We compared attention maps generated by viewers in 89 
this peripheral start free viewing task to saliency maps and meaning maps.  90 

2 Method 91 

2.1 Eyetracking 92 

2.1.1 Participants 93 
The sample size was set with an a priori stopping rule of 30 participants based on prior experiments 94 
using these methods (Peacock et al., 2019a, 2019b). To reach 30 participants, 32 University of 95 
California, Davis, undergraduate students with normal or corrected-to-normal vision initially 96 
participated in the experiment (27 females, average age = 21.25). All participants were naïve to the 97 
purpose of the study and provided verbal consent. The eye movement data from each participant 98 
were automatically inspected for artifacts due to blinks or loss of calibration. Following Henderson 99 
and Hayes (2017), we averaged the percent signal ([number of good samples / total number of 100 
samples] x 100) for each trial and participant using custom MATLAB code. The percent signal for 101 
each trial was then averaged for each participant and compared to an a priori 75% criterion for 102 
signal. Overall, two participants were excluded based on this criterion due to poor eyetracking quality 103 
resulting in a total of 30 participants/datasets analyzed. Individual trials that had less than 75% signal 104 
were also excluded. In total, no individual trials were excluded based on these criteria.  105 
 106 
2.1.2 Apparatus  107 
Eye movements were recorded using an EyeLink 1000+ tower mount eyetracker (spatial resolution 108 
0.01° rms) sampling at 1000 Hz (SR Research, 2010b). Participants sat 85 cm away from a 21” 109 
monitor, so that scenes subtended approximately 26.5° x 20° of visual angle at 1024x768 pixels. 110 
Head movements were minimized by using a chin and forehead rest. Although viewing was 111 
binocular, eye movements were recorded from the right eye. The experiment was controlled with SR 112 
Research Experiment Builder software (SR Research, 2010a). Fixations and saccades were 113 
segmented with EyeLink’s standard algorithm using velocity and acceleration thresholds (30°/s and 114 
9500°/s2; SR Research, 2010b). Eye movement data were imported offline into Matlab using the 115 
EDFConverter tool. The first fixation was eliminated from analysis because it was experimenter-116 
defined (as opposed to participant-defined). Additionally, fixations that landed off the screen, and 117 
any fixations that were less than 50ms and greater than 1500ms were eliminated as outliers. 118 
Occasionally, saccade amplitudes are not segmented correctly by EyeLink’s standard algorithm, 119 
resulting in large values. Given this, saccade amplitudes > 25° were also excluded. Fixations 120 
corresponding to these saccades were included as long as they met the other exclusion criteria. This 121 
outlier removal process resulted in loss of 6.05% of the data across all subjects. 122 
 123 
2.1.3 Stimuli 124 
Twenty digitized photographs (1024x768 pixels) of indoor and outdoor real-world scenes were used 125 
as stimuli. Scenes were luminance matched across the scene set by transforming the RGB image of 126 
the scene to LAB space and scaling the luminance channel from 0 to 1. Luminance matching was 127 
conducted to make sure that there were no overly bright or dark scenes in the experiment and does 128 
not change the relative ranking of image salience within a scene. All instruction, calibration, and 129 
response screens were luminance matched to the average luminance (M = 0.45) of the scenes.    130 
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  131 
2.1.4 Procedure 132 
Participants first completed two practice trials to familiarize them with the task. Prior to the scene 133 
viewing portion of the task, participants were instructed to fixate on a black fixation cross (i.e., 134 
within a 100x100 pixel square window surrounding the cross) on a grey background for one second 135 
(Figure 2b). The location of the black cross was chosen randomly from the x,y coordinate pairs 136 
forming two concentric circles centered on the screen (Figure 2a). The concentric circles had radii of 137 
192 and 288 pixels, respectively. During analyses, the eye movements corresponding to the 138 
concentric circles (Figure 2a) were collapsed, as the concentric circles provided a method to reduce 139 
center bias (via sampling locations across the scene) but we had no theoretical motivation to analyze 140 
the data corresponding to the circles separately. After the one second period ended, the grey 141 
background was replaced with the scene that participants would explore during the scene viewing 142 
portion of the experiment (Figure 2b). During this period of time, participants were instructed to 143 
maintain gaze on the fixation cross for another 0.5s. If participants moved their eyes away from the 144 
fixation cross during this 0.5s period, the scene immediately was replaced with a grey screen and 145 
participants returned to the beginning of the trial for the same scene (Figure 2b). If fixation was 146 
maintained during the 0.5s period, the cross disappeared, and participants were able to freely move 147 
their eyes around the scene for 8s (Figure 2b). During the scene viewing portion of the experiment, 148 
participants were instructed to view each scene naturally, as they would in their daily lives. Given the 149 
free viewing nature of the task, participants were not required to provide any responses.  150 

After the practice trials, a 13-point calibration procedure was performed to map eye position 151 
to screen coordinates. Successful calibration required an average error of less than 0.49° and a 152 
maximum error of less than 0.99°. Presentation of each scene was preceded by a calibration check, 153 
and the eye-tracker was recalibrated when the calibration was not accurate.  154 

Each participant viewed all 20 scene stimuli during the task. Scenes were presented in a 155 
randomized order for each participant.  156 

2.2 Map Generation 157 

2.2.1 Meaning Maps 158 
A subset of the meaning maps generated by Henderson and Hayes (2017) were used in the present 159 
study. To create meaning maps, scene-patch ratings were performed by 84 participants on Amazon 160 
Mechanical Turk. Participants were recruited from the United States, had a hit approval rate of 99% 161 
and 500 hits approved, and were permitted to participate only once. Participants were paid $0.50 per 162 
assignment, and all participants provided informed consent. Rating stimuli consisted of the same 20 163 
photographs of real-world scenes used in the eyetracking portion of the experiment. Each scene was 164 
decomposed into partly overlapping circular patches at a fine and course spatial scale. The full patch 165 
stimulus set consisted of 6,000 fine patches (87-pixel diameter) and 2,160 coarse patches (205-pixel 166 
diameter), for a total of 8,160 patches. The ideal meaning-map grid density for each patch size was 167 
previously estimated by simulating the recovery of known image properties (i.e., luminance, edge 168 
density, and entropy; see Henderson and Hayes 2018).  169 

Participants were instructed to rate the meaningfulness of each patch based on how 170 
informative or recognizable it was on a 6-point Likert scale (very low, low, somewhat low, somewhat 171 
high, high, very high). Prior to the rating task, participants were provided with examples of two low-172 
meaning and two high-meaning scene patches to make sure they understood the rating task. Patches 173 
were presented in random order and without scene context, so ratings were based on context-free 174 
judgments. Each participant rated 300 random patches. Each unique patch was rated three times by 175 
three independent raters for a total of 19,480 ratings across the scene set. Due to the high degree of 176 
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overlap across patches, each fine patch contained rating information from 27 independent raters and 177 
each coarse patch contained rating information from 63 independent raters. Meaning maps were 178 
generated by averaging, smoothing, and combining fine and coarse maps from the corresponding 179 
patch ratings. The ratings for each pixel at each scale in each scene were averaged, producing an 180 
average fine and coarse rating map for each scene. The average rating maps were then smoothed 181 
using thin-plate spline interpolation (i.e., thinplateinterp method in MATLAB; MathWorks, Natick, 182 
MA). To generate the final meaning map for each scene, the smoothed fine and coarse maps were 183 
combined using the simple average (coarse map + fine map / 2).  184 

Saliency models typically contain center bias, including the Graph-based Visual Saliency 185 
(GBVS) model which is intrinsically center-biased (graph-based differences in computation produces 186 
the center bias in GBVS) (Harel et al., 2006). Since meaning maps are not intrinsically center-biased 187 
in the same way as GBVS (as meaning maps are based on ratings of isolated scene patches), we 188 
added the GBVS center bias to meaning maps to equally weight the centers of meaning and saliency 189 
maps. To generate meaning maps containing center-bias, a multiplicative center bias operation was 190 
applied to the meaning maps using the center bias present in the GBVS saliency maps. Here, we 191 
inverted the ‘invCenterBias.mat’ (i.e., inverted the inverse) included in the GBVS package as an 192 
estimate of center bias. From here, we multiplied the resulting center bias and the raw meaning maps 193 
to create meaning maps with center bias (Henderson & Hayes, 2017, 2018; Peacock et al., 2019a, 194 
2019b). Note that because meaning maps do not contain intrinsic center bias like GBVS, we used 195 
both the original meaning maps containing no center bias and the meaning maps with the center-bias 196 
operation applied (Figure 3). 197 

 198 
2.2.2 Image Salience Maps 199 
Saliency maps for each scene were generated using the GBVS toolbox with default settings (Harel et 200 
al., 2006). GBVS is a prominent saliency model that combines maps of low-level image features to 201 
create saliency maps (Figure 3). Center bias is a natural feature of GBVS saliency maps. To compare 202 
them to the original, unbiased meaning maps, we also generated GBVS maps without center bias 203 
(Figure 3). Unbiased GBVS maps were generated using the whitening method (Rahman & Bruce, 204 
2015), a two-step normalization in which each saliency map is normalized to have 0 mean and unit 205 
variance. Subsequently, a second, pixel-wise normalization is performed so that each pixel across all 206 
the saliency maps has 0 mean and unit variance.  207 
 208 
2.2.3 Fixation Density Maps 209 
To generate fixation density maps, a fixation frequency matrix based on the locations (x,y 210 
coordinates) of all fixations (collapsed across both of the concentric circles used to generate pretrial 211 
fixation coordinates) was generated across participants for each scene. Then, a Gaussian low-pass 212 
filter (from the MIT Saliency Benchmark toolbox: 213 
https://github.com/cvzoya/saliency/blob/master/code_forMetrics/antonioGaussian.m) with a circular 214 
boundary and a cutoff frequency of −6dB (a window size of ~2° of visual angle) was applied to each 215 
matrix to account for foveal acuity and eyetracker error.  216 
 217 
2.2.4 Histogram Matching 218 
In order to normalize meaning and saliency maps to a common scale, image histogram matching was 219 
used with the fixation density map for each scene serving as the reference image for the 220 
corresponding meaning and saliency maps for the same scene (Henderson & Hayes, 2017). Image 221 
histogram matching is desirable because it normalizes an input image to a reference image, ensuring 222 
that the distribution of “power” in the two images is similar. Using the ground-truth fixation density 223 
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maps as the reference for both meaning and saliency allowed us to directly compare the meaning and 224 
saliency maps. The ‘imhistmatch’ function from the Matlab Image Processing Toolbox was used to 225 
accomplish image histogram matching. 226 

3 Results 227 

3.1 Center Bias 228 

To assess whether the tendency to fixate scene centers was reduced by employing peripherally 229 
located fixation crosses with delayed eye movements (Rothkegal et al., 2017), we tested the strength 230 
of the central fixation bias in both a representative meaning mapping study that contained central 231 
fixation bias and employed a central pretrial fixation (Peacock et al, 2019b) and the current 232 
peripheral start experiment. Central start refers to the Peacock et al. (2019b) and peripheral start 233 
refers to the current study.  234 

To test the strength of the center bias reduction in the current study, we generated fixation 235 
density maps for each scene in each study and then z-normalized the fixation density maps for each 236 
scene to one another. Because the largest difference in center bias was observed within a 200-pixel 237 
window around center (Figure 4), we focused an initial center bias analysis on these pixels. After 238 
excluding regions of each map that were not contained within this window, the values at each pixel 239 
of each map were then converted to a vector and subtracted from one another (i.e., central start pixels 240 
– peripheral start pixels) to calculate a difference score of center bias for each scene. An average 241 
difference score for each scene was calculated by averaging the difference scores for each pixel. A 242 
positive difference score indicated there was greater center bias in the central start study for that 243 
scene and a negative difference score indicated there was greater center bias in the current, 244 
peripheral-start study for that scene.  245 

A two-tailed one-sample t-test showed that center bias was significantly reduced in the current 246 
peripheral start study relative to the central start study (M = 0.28, SD = 0.42): t(19) = 3.05, p = 0.006, 247 
95% CI = [0.09, 0.48]. The degrees of freedom refer to the total number of scenes minus one (N - 1) 248 
and confidence interval indicates the range of values that were 95% certain to include the true 249 
population mean. To test how the manipulation influenced center bias across the span of scenes, we 250 
also conducted the same analysis using all of the pixels. Here, the result replicated (M = 0.04, SD = 251 
0.03): t(19) =5.17, p < 0.001, 95% CI = [0.02, 0.06]. We further visualize this in Figure 4 with heat 252 
maps representing all fixations across all participants and scenes in the present study and the Peacock 253 
et al. (2019b) central start study. Both the analysis and plots show that the strong central bias in the 254 
central start experiment (Peacock et al., 2019b) was reduced with the peripheral start paradigm used 255 
in the current study.  256 

3.2 Eye Movements 257 

3.2.1 Whole Scene Analyses 258 
Given that the current study successfully reduced the central fixation bias, we next sought to 259 
understand the relationship between attention to meaningful and salient scene regions. Linear Pearson 260 
correlations (Bylinskii, Judd, Oliva, Torralba, & Durand, 2019) were used to quantify how much 261 
variance in fixation densities meaning and saliency accounted for. The CC.m function from the MIT 262 
saliency benchmark toolbox (https://github.com/cvzoya/saliency/blob/master/code_forMetrics/CC.m) 263 
was used to calculate the Pearson correlation. We chose CC.m because it has been used to evaluate 264 
the various metrics included in the MIT saliency benchmark (Bylinskii et al., 2019). The function 265 
works by first normalizing the to-be-correlated maps. It then converts the two-dimensional map 266 
arrays to one-dimensional vectors and correlates these vectors. The output of the function is then 267 
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squared to calculate the shared variance explained by meaning and saliency. Two-tailed, paired t-tests 268 
were used to test the relative ability of the meaning and saliency maps to predict the variance in 269 
fixation density. We note that because statistics are performed on the scene-level and not the 270 
participant-level, the degrees of freedom in the following analyses refer to the number of scenes used 271 
in the experiment minus one.  272 

To investigate how meaning and salience independently accounted for the variance in fixation 273 
densities, semi-partial correlations were used. Semi-partial correlations capture the amount of total 274 
variance in fixation densities that can be accounted for with the residuals from meaning or saliency 275 
after removing the intercorrelation between meaning and saliency. In other words, semi-partial 276 
correlations show the total variance in fixation densities that can be accounted for by the meaning-277 
independent variance in salience and the salience-independent variance in meaning. Two-tailed one-278 
sample t-tests were employed to test whether the unique variance in attention explained by each map 279 
type was significantly greater than zero.  280 
  In past meaning mapping studies including Peacock et al. (2019b), center-biased meaning 281 
and saliency maps were used to predict eye movements, as there was significant central fixation bias 282 
during viewing 2019b. In the present study, we therefore first used center-biased prediction maps to 283 
more equally compare the original free viewing results to those of the current study and because 284 
GBVS maps are intrinsically center-biased. Because meaning maps do not contain this intrinsic 285 
center bias, however, we also conducted analyses with unbiased meaning and saliency maps. If the 286 
advantage of meaning over image salience in previous meaning mapping studies using the central 287 
start position, such as in Peacock et al. (2019b), was a function of center bias, then that advantage 288 
should be reduced in the present study. On the other hand, if the advantage of meaning over image 289 
salience is a general phenomenon and not a function of center bias, then we should continue to see 290 
that advantage.  291 

Using center-biased meaning and saliency maps (Figure 5), meaning explained 40% (M = 292 
0.40, SD = 0.16) and image salience explained 26% of the variance in fixation density (M = 0.26, SD 293 
= 0.15) with linear correlations, t(19) = 5.07, p < 0.001, 95% CI = [0.08, 0.20] (Figure 7). For the 294 
semi-partial correlations, meaning explained 16% (M = 0.16, SD = 0.11) (t(19) = 6.79, p < 0.001, 295 
95% CI = [0.11, 0.21])  and saliency explained 2% of the variance in fixation density (M = 0.02, SD 296 
= 0.04) (t(19) = 2.40, p = 0.03, 95% CI = [0.003, 0.04]). Although meaning and image salience 297 
explained significant overall variance in fixation density, salience predicted very little unique 298 
variance. 299 

Using unbiased meaning and saliency maps (Figure 5), meaning explained 33% (M = 0.33, 300 
SD = 0.15) whereas image salience explained 7% of the variance in fixation density (M = 0.07, SD = 301 
0.07) with linear correlations, t(19) = 7.44, p < 0.001, 95% CI = [0.19, 0.33]. For the semi-partial 302 
correlations, meaning explained a unique 28% (M = 0.28, SD = 0.14) (t(19) = 9.09, p < 0.001, 95% 303 
CI = [0.22, 0.35]) whereas saliency explained only a unique 2% of the variance (M = 0.02, SD = 304 
0.03) (t(19) = 3.74, p = 0.001, 95% CI = [0.01, 0.04]). As with the center biased maps, meaning and 305 
saliency explained significant overall variance in fixation density but meaning predicted substantial 306 
variance whereas saliency did not. 307 

Finally, the strongest test of whether meaning was superior in predicting eye movements 308 
relative to image salience despite central fixation bias was to compare the unbiased meaning maps, 309 
which are not upweighted at scene centers where fixations tend to land, to center-biased saliency 310 
maps. To test this, the unbiased meaning linear correlations and the center-biased salience linear 311 
correlations were submitted to a paired t-test. The results showed that the unbiased meaning maps 312 
predicted fixation densities significantly better (33%) than the center-biased saliency maps (26%): 313 
t(19) = 2.05, p = 0.05, 95% CI = [-0.001, 0.15]. Unbiased meaning explained 17% unique variance 314 
(M = 0.17, SD = 0.09; t(19) = 8.38, p < 0.001, 95% CI = [0.13, 0.22]) and center-biased saliency 315 
explained only 10% of this variance (M = 0.10, SD = 0.09; t(19) = 4.82, p < 0.001, 95% CI = [0.06, 316 
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0.14]), suggesting that even when meaning maps are not upweighted in scene centers, they can 317 
outperform saliency maps that do contain center bias.  318 

As shown in Table 1, the overall magnitudes of values and effects were very similar between 319 
the present peripheral start experiment and our previous central start experiment. 320 
 321 
3.2.2 Early Fixation Analyses  322 
It has been hypothesized that early fixations may be more directly controlled by image salience than 323 
subsequent fixations (Anderson, Ort, Kruijne, Meeter, & Donk, 2015; Borji, Parks, & Itti, 2013; 324 
Parkhurst et al., 2007). Although data from our prior work has not supported that hypothesis 325 
(Henderson & Hayes, 2017, 2018; Henderson et al., 2018; Peacock et al., 2019a, 2019b), these 326 
studies used a central fixation position, which arguably could have favored meaning over salience. 327 
Since central fixation bias was significantly reduced in the current study compared to our central start 328 
study (Figure 4), we conducted an additional analysis focused specifically on early fixations to test 329 
whether meaning continues to account for significantly greater variance in fixation density compared 330 
to image salience. The data were submitted to an ordinal fixation analysis for the first three subject-331 
generated fixations, in which fixation density maps were produced for each sequential fixation in 332 
each scene (Henderson & Hayes, 2017, 2018; Henderson et al., 2018; Peacock et al., 2019a, 2019b). 333 
For each fixation, analyses proceeded as in the whole scene analyses, and p-values were corrected for 334 
multiple comparisons using the Bonferroni correction. If greater early attention to meaning versus 335 
salience observed in our previous studies was a function of center bias, then that advantage should be 336 
eliminated here. If greater early attention to meaning generalizes beyond center bias, as our previous 337 
statistical control of center bias suggests (Henderson & Hayes, 2017; Hayes & Henderson, 2019; 338 
Peacock et al., 2019a), then the results should continue to show an advantage of meaning over 339 
salience here even though center bias was reduced.  340 

For the center-biased maps, meaning accounted for 35%, 31%, and 23% and saliency 341 
accounted for 18%, 15%, and 12% of the variance in the first three fixations, respectively, for the 342 
linear correlations (Figure 6), with all three fixations showing a significant meaning advantage over 343 
image salience in predicting fixation density (fixation 1: t(19) = 4.83, Bonferroni-corrected p < 0.001, 344 
95% CI = [0.09, 0.23]; fixation 2: t(19) = 5.37, Bonferroni-corrected p < 0.001, 95% CI = [0.10, 345 
0.23]; fixation 3: t(19) = 4.03, Bonferroni-corrected p < 0.001, 95% CI = [-0.05, 0.17]). For the semi-346 
partial correlations, meaning accounted for a significant 19%, 19%, and 13% of the unique variance 347 
in the first three fixations (fixation 1: t(19) = 6.53, Bonferroni-corrected p < 0.01, 95% CI = [0.13, 348 
0.25]; fixation 2: t(19) = 7.81, Bonferroni-corrected p < 0.001, 95% CI = [0.14, 0.24]; fixation 3: 349 
t(19) = 5.56, Bonferroni-corrected p < 0.001, 95% CI = [0.08, 0.18]) and saliency accounted for 3%, 350 
3%, and 2% of the unique variance in the first three fixations, respectively. Saliency only explained a 351 
significant amount of the unique variance on fixation 1 but not fixations 2 or 3 (fixation 1: t(19) = 352 
3.69, Bonferroni-corrected p = 0.01, 95% CI = [0.01, 0.05]; fixation 2: t(19) = 2.60, Bonferroni-353 
corrected p = 0.11, 95% CI = [0.006, 0.05]; fixation 3: t(19) = 1.80, Bonferroni-corrected p = 0.52, 354 
95% CI = [-0.003, 0.05]) In total, this suggests that meaning was a significantly better predictor than 355 
saliency when considering the earliest of eye movements. 356 

For the unbiased maps, meaning accounted for 13%, 16%, and 18% and saliency accounted 357 
for 2%, 3%, and 3% of the variance in the first three fixations for the linear correlations (Figure 6), 358 
with significant differences between meaning and salience for all three fixations (fixation 1: t(19) = 359 
4.68, Bonferroni-corrected p = 0.001, 95% CI = [0.06, 0.15]; fixation 2: t(19) = 3.92, Bonferroni-360 
corrected p = 0.003, 95% CI = [0.06, 0.21]; fixation 3: t(19) = 4.49, Bonferroni-corrected p = 0.001, 361 
95% CI = [0.08, 0.22]). The results did not change for the semi-partial correlations, with meaning 362 
accounting for a significant 12%, 15%, and 16% of the variance in the first three fixations (fixation 1: 363 
t(19) = 6.10, Bonferroni-corrected p < 0.001, 95% CI = [0.08, 0.16]; fixation 2: t(19) = 4.60, 364 
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Bonferroni-corrected p = 0.001, 95% CI = [0.08, 0.22]; fixation 3: t(19) = 5.10, Bonferroni-corrected 365 
p < 0.001, 95% CI = [0.10, 0.23]) whereas saliency accounted for a nonsignificant 2%, 3%, and 3% 366 
of the variance in the first three fixations (fixation 1: t(19) = 2.43, Bonferroni-corrected p = 0.15, 367 
95% CI = [0.002, 0.03]; fixation 2: t(19) = 2.96, Bonferroni-corrected p = 0.05, 95% CI = [0.004, 368 
0.03]; fixation 3: t(19) = 2.85, Bonferroni-corrected p = 0.06, 95% CI = [0.003, 0.02]). The results 369 
considering the unbiased maps replicated the center biased maps in that meaning predicted 370 
significantly greater variance in fixation density than image salience. Furthermore, salience predicted 371 
no unique variance in attention when meaning was partialed out but when saliency was partialed out, 372 
meaning continued to account for unique variance in attention. 373 

To test whether unbiased meaning maps were superior in predicting eye movements relative 374 
to center-biased image salience maps on a fixation by fixation basis, the unbiased meaning linear 375 
correlations and the center-biased salience linear correlations for each fixation were submitted to 376 
paired t-tests corrected for multiple comparisons via the Bonferroni correction. The results showed 377 
that for the first fixation, center-biased saliency had a numerical but not a significant advantage over 378 
unbiased meaning: t(19) = -2.22, Bonferroni-corrected p = 0.12, 95% CI = [-0.11, -0.003]. For the 379 
second and third fixations, meaning had a numerical, non-significant advantage over image salience 380 
(fixation 2: : t(19) = 0.40, Bonferroni-corrected p = 1.00, 95% CI = [-0.06, 0.09];  fixation 3: : t(19) = 381 
1.87, Bonferroni-corrected p = 0.23, 95% CI = [-0.007, 0.13]). Unbiased meaning explained 382 
significant unique variance in the first three fixations (Fixation 1: M = 0.06, SD = 0.04; t(19) = 6.12, 383 
Bonferroni-corrected p < 0.001, 95% CI = [0.04, 0.08]; Fixation 2: M = 0.10, SD = 0.11; t(19) = 4.01, 384 
Bonferroni-corrected p = 0.005, 95% CI = [0.05, 0.15]; Fixation 3: M = 0.11, SD = 0.10; t(19) = 4.99, 385 
Bonferroni-corrected p < 0.001, 95% CI = [0.07, 0.16]) and image salience explained unique 386 
variance in the first two fixations (Fixation 1: M = 0.11, SD = 0.08; t(19) = 6.04, Bonferroni-387 
corrected p < 0.001, 95% CI = [0.07, 0.15]; Fixation 2: M = 0.08, SD = 0.07; t(19) = 5.39, 388 
Bonferroni-corrected p < 0.001, 95% CI = [0.05, 0.11]) but not the third fixation (M = 0.06, SD = 389 
0.09; t(19) = 2.87, Bonferroni-corrected p = 0.06, 95% CI = [0.02, 0.10]). 390 

Although only 10.70% (SD = 0.13) of trials were repeated due to participants failing to 391 
maintain fixation during scene onset, we reran the analyses excluding these trials and found the 392 
results to be unchanged. This suggests that multiple previews of scenes did not drive any of the 393 
reported effects. 394 

As shown in Table 2, the earliest fixations showed similar effects of meaning over saliency in 395 
the present study as the earlier central start experiment (Peacock et al., 2019b), contrary to the 396 
hypothesis that the early fixation advantage of meaning over image salience previously observed was 397 
simply due to center bias from the initial fixation locations used in previous meaning mapping 398 
studies. 399 

Overall, the results are consistent with previous meaning mapping work using a traditional 400 
central fixation start location (Henderson & Hayes, 2017, 2018; Henderson et al., 2018; Peacock et 401 
al., 2019a, 2019b; Rehrig et al., 2020) in which we found that early eye movements were more 402 
related to meaning than saliency. The present findings verify that the advantage of meaning over 403 
salience observed by previous meaning mapping studies was not simply due to an advantage for 404 
meaning at scene centers induced by the use of an initial central fixation location. Furthermore, this 405 
conclusion is strengthened when only the earliest fixations are analyzed. Overall, these findings show 406 
that when employing a paradigm that reduces central fixation bias, early fixations are still better 407 
explained by meaning than by image salience.  408 
 409 
3.2.3 Scene-dependent and Independent Spatial Biases in Meaning and Saliency Maps 410 
As patches of meaning and salient locations are differently distributed across the images, it is 411 
theoretically possible that fixations are not predicted or explained by meaning or salience but that 412 
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rather a third factor that drives the spatial distributions of meaning, image salience, and fixations. 413 
Center bias is one such factor. If meaning/saliency maps are capturing scene-specific distributions of 414 
meaning/saliency (as opposed to scene-independent spatial biases in eye movements, such as center 415 
bias bias), then a meaning/saliency map for a given scene should be significantly more related to 416 
fixation densities from the same scene than to fixation densities from another scene. However, if 417 
meaning and saliency maps are simply capturing center bias (scene-independent spatial biases in 418 
viewing), then the meaning and saliency map for a given scene should not be any more related to 419 
fixation densities from the same scene or another.  420 

To test this, we calculated a scene-by-scene fixation density squared linear correlation to the 421 
meaning and saliency maps. Because there were 20 scenes, this produced two 20x20 similarity 422 
matrices, one for meaning and one for saliency (Figure 7a). If each model is capturing scene-423 
dependent variance, then the diagonal of the similarity matrix should have a larger value than the off-424 
diagonal value. Conversely, if the models are only capturing spatial bias, then the matrices should be 425 
uniform. 426 

Difference calculations were computed for both models, again producing two 20x20 difference 427 
matrices, one for meaning and one for saliency (Figure 7b). Difference scores were computed by 428 
taking the difference between each model correlated with fixation densities from the same scenes 429 
(i.e., the diagonals from Figure 7a) and the correlations computed between the same 430 
meaning/saliency maps and the fixation densities from all the other scenes (off-diagonals in Figure 431 
7a). If a given meaning map or saliency map was more strongly correlated with the fixation densities 432 
from the same scene than another scene, then the difference score was positive. If a given meaning or 433 
saliency map was more strongly correlated with fixation densities from another scene than the same 434 
scene, then the difference score was negative. Difference scores along the diagonal were 0 (Figure 435 
7b).  436 

The average difference score for each scene was then computed and submitted to a one-sample 437 
t-test comparing the difference scores for meaning (M = 0.23, SD = 0.02) and saliency (M = 0.12, SD 438 
= 0.03) to 0. Overall, meaning and saliency maps were significantly more related to fixation densities 439 
from the same scene than other scenes (meaning: t(19) = 51.43, p < 0.001, 95% CI = [0.22, 0.24]; 440 
saliency: t(19) = 16.15, p < 0.001, 95% CI = [0.10, 0.13]). In both cases, meaning and saliency 441 
predict scene-specific eye movements significantly better than would be expected by chance. 442 
However, a paired t-test comparing the difference scores showed that meaning maps for a given 443 
scene were significantly more related to fixation densities for a given scene than image salience 444 
(t(19) = 14.98, p < 0.001, 95% CI = [0.09, 0.12]), suggesting that meaning captured more scene-445 
specific meaning not related to scene-independent spatial biases in viewing than salience. In both 446 
cases, meaning and saliency are predicting scene-specific eye movements significantly better than 447 
would be expected by chance. 448 

4 General Discussion 449 

Recent work in real-world attentional guidance has shown that meaning maps representing the 450 
semantic features of local scene regions are more highly related to fixation distributions than are 451 
saliency maps representing image feature differences, a result that has been replicated across a 452 
number of viewing tasks (Henderson & Hayes, 2017, 2018; Henderson et al., 2018; Henderson et al., 453 
2018; Hayes & Henderson, 2019; Peacock et al., 2019a, 2019b; Rehrig et al., 2020). However, 454 
centers of photographs may contain greater meaningful information and image features than in scene 455 
peripheries, and for that reason participants might strategically fixate centrally (Bindemann, 2010; 456 
Parkhurst et al., 2002; Rothkegal et al., 2017; Tatler, 2007; Tseng et al., 2009; van Renswoude et al., 457 
2019), conflating whether meaning actually guides attention better than image salience or whether 458 
this phenomenon is due to central fixation bias. Although previous meaning map studies have made 459 
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attempts to tackle this issue by modifying meaning and saliency maps or eye movements in a post-460 
hoc fashion [i.e., removing scene centers (Henderson & Hayes, 2017), directly comparing center 461 
bias-only saliency models to full saliency models (Hayes & Henderson, 2019) or by using center-462 
biased and unbiased meaning and saliency maps to predict fixations (Peacock et al., 2019a)], to date 463 
there has been no formal attempt to manipulate the extent to which participants attend to scene 464 
centers a priori and how such a manipulation interacts with meaning and saliency.  465 

The purpose of the current study was consequently to test whether meaning continues to 466 
produce an advantage over saliency when central fixation bias is experimentally reduced. To reduce 467 
center bias, we used a recent method in which the location of the pretrial fixation cross is presented 468 
peripherally, and the first eye movement is delayed after scene onset (Rothkegal et al., 2017). We 469 
then compared our data to Peacock et al. (2019b), an identical meaning mapping study except with an 470 
initial central starting fixation.  471 
 There were three main results. First, to validate that our peripheral fixation manipulation 472 
reduced center bias, we compared the amount of center bias present here against the amount of center 473 
bias present in an identical experiment with central fixation (Peacock et al., 2019b). We found that 474 
the amount of center bias was significantly reduced here relative to Peacock et al. (2019b), a finding 475 
that converges with Rothkegal et al. (2017).  476 

Second, even with central bias reduced, we found that meaning predicted significantly greater 477 
variance in fixation density than image salience. When the variance explained by meaning was 478 
controlled, image salience alone was unable to account for variance in fixation density, but when the 479 
variance explained by image salience was statistically controlled, meaning still accounted for 480 
variance in fixation density. An ordinal fixation analysis showed that meaning is more related to the 481 
guidance of eye movements than image salience at the earliest fixations, contrary to the proposal that 482 
image salience preferentially guides early attention (Anderson & Donk, 2017; Anderson, Ort, 483 
Kruijne, Meeter, & Donk, 2015; Henderson & Ferreira, 2004; Henderson & Hollingworth, 1999). 484 
These results held true for analyses using both traditional meaning and saliency maps containing 485 
center bias as well as maps in which center bias was removed.  486 

We also assessed whether unbiased meaning maps predicted fixation densities better than 487 
center-biased saliency maps. The main analysis showed that unbiased meaning predicted eye 488 
movements above and beyond center-biased saliency, despite not being upweighted in scene centers. 489 
For the ordinal fixation analyses, saliency had a numerical advantage on the first fixation which was 490 
likely due to the artifactual upweighting that center-bias generates in early viewing relative to maps 491 
not containing center bias (Peacock et al., 2019a, 2019b). However, for the second and third 492 
fixations, meaning had a numerical advantage over image salience. This suggests that even when 493 
meaning maps are not upweighted in scene centers, they can outperform saliency maps that do 494 
contain center bias. In total, the finding that meaning still explained eye movements better than image 495 
salience when the tendency to fixate centrally was reduced indicates that the eye movement guidance 496 
advantage of meaning over image salience is not an artifact of central fixation bias found in previous 497 
meaning mapping work.   498 
 A final analysis tested whether the spatial distributions of meaning and image salience are 499 
driven by scene-independent spatial biases in viewing (center bias) or whether these maps truly 500 
capture scene-specific distributions of meaning and saliency. The results showed that meaning is 501 
driven by scene-specific information not related to scene-independent spatial biases in viewing 502 
whereas image salience is driven by some scene-specific information but also captures general spatial 503 
biases in viewing (i.e., center bias) not tied to the saliency distribution of a specific scene. This result 504 
converges with Hayes and Henderson (2019) who found that when center bias is extracted from a 505 
given saliency model, this center bias alone predicts eye movements better than the original saliency 506 
model, but that center bias does not predict fixation locations better than meaning. Together, the 507 
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current result and the finding from Hayes and Henderson (2019) advocates for a model in which 508 
scene centers attract fixations beyond image salience but not beyond meaning.  509 

4.1 Conclusion 510 

The results of the present study were consistent with past meaning mapping work demonstrating that 511 
meaning accounts for the spatial distribution of fixations better than image salience during scene 512 
viewing, and extended those findings to a task in which central fixation bias was experimentally 513 
reduced a priori. Findings indicated that meaning distributions are driven by scene-dependent 514 
information unrelated to center bias whereas saliency distributions are driven by scene-dependent 515 
information and center bias. We conclude that meaning plays the central role in attentional 516 
prioritization in scenes with center bias controlled. 517 
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 630 

11 Tables 631 

Table 1 
Comparison between central start and peripheral start experiments using the meaning and saliency maps 
to predict the overall pattern of attention. Comparisons include center bias and unbiased meaning and 
saliency maps, and linear and semi partial correlations. The central start data are from Peacock et al., 
(2019b). 

Center-biased Maps 
Correlation Type Central Start Peripheral Start 
Linear Meaning M = 0.39, SD = 0.14 M = 0.40, SD = 0.16 
Linear Image Salience M = 0.24, SD = 0.14 M = 0.26, SD = 0.15 
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Paired t-test t(19) = 7.08, p < 0.001, 95% CI = 
[0.10, 0.19] 

t(19) = 5.07, p < 0.001, 95% CI = 
[0.08, 0.20]  

Unique Meaning M = 0.16, SD = 0.07 M = 0.16, SD = 0.11 
One-sample t-test t(19) = 9.52, p < 0.001, 95% CI = 

[0.13, 0.20] 
t(19) = 6.79, p < 0.001, 95% CI = 
[0.11, 0.21] 

Unique Image Salience M = 0.02, SD = 0.03 M = 0.02, SD = 0.04 
One-sample t-test t(19) = 2.37, p = 0.03, 95% CI = 

[0.002, 0.03] 
t(19) = 2.40, p = 0.03, 95% CI = 
[0.003, 0.04] 

Unbiased Maps 
Linear Meaning M = 0.33, SD = 0.12 M = 0.33, SD = 0.15 

Linear Image Salience M = 0.08, SD = 0.08 M = 0.07, SD = 0.07 

Paired t-test t(19) = 8.07, p < 0.001, 95% CI = 
[0.18, 0.31] 

t(19) = 7.44, p < 0.001, 95% CI = 
[0.19, 0.33] 

Unique Meaning M = 0.27, SD = 0.11 M = 0.28, SD = 0.14 

One-sample t-test t(19) = 10.73, p < 0.001, 95% CI = 
[0.22, 0.33] 

t(19) = 9.09, p < 0.001, 95% CI = 
[0.22, 0.35] 

Unique Image Salience M = 0.03, SD = 0.04 M = 0.02, SD = 0.03 

One-sample t-test t(19) = 3.32, p = 0.004, 95% CI = 
[0.01, 0.05] 

t(19) = 3.74, p = 0.001, 95% CI = 
[0.01, 0.04] 

 632 
 633 

Table 2 
Comparison Between Peripheral Start (current study) and Central Start (Peacock et al., 2019b) 
experiments using Meaning (percentage of variance explained) and Saliency (percentage of variance 
explained) to predict early fixations.  

Center-biased Maps 
 Central Start Peripheral Start 
Correlation Type Fix 1 Fix 2 Fix 3 Fix 1 Fix 2 Fix 3 
Linear Meaning 38% 31% 20% 35% 31% 23% 
Linear Image Salience 10% 15% 11% 18% 15% 12% 
Meaning advantage?  Yes Yes Yes Yes Yes Yes 
Unique Meaning 30% 19% 12% 19% 19% 19% 
Significant? Yes Yes Yes Yes Yes Yes 
Unique Image Salience 2% 3% 3% 3% 3% 2% 
Significant? Yes Yes Yes Yes No No 

Unbiased Maps 
Linear Meaning 8% 15% 15% 13% 16% 18% 
Linear Image Salience 2%  4% 4% 2% 3% 3% 
Meaning advantage?  Yes Yes Yes Yes Yes Yes 



  Meaning and Center Bias 

 
16 This is a provisional file, not the final typeset article 

Unique Meaning 7% 13% 14% 12% 15% 16% 
Significant? Yes Yes Yes Yes Yes Yes 
Unique Image Salience 1% 2% 2% 2% 3% 3% 
Significant? No No No No No No 
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12 Figure Captions 635 

Figure 1. Participant scan path in a real-world scene. The red circle represents the first fixation and 636 
the green circles represent subsequent fixations. Arrows represent the trajectory of eye movements to 637 
the next landing point. 638 
 639 
Figure 2. Task figure. a) shows the locations of the concentric circles that the pretrial fixation 640 
coordinates were randomly selected from in this study. b) is a visual representation of the task.  641 
 642 
Figure 3. Map examples. a) shows the example scenes with fixations overlaid and b) is the fixation 643 
density map for the example scene. c) shows the center-biased meaning map and d) shows the 644 
unbiased meaning map for the example scene. e) shows the center-biased saliency map and f) shows 645 
the unbiased saliency map for the example scene.  646 
 647 
Figure 4. Fixation distributions. The distribution of all fixations aggregated across participants and 648 
scenes a) from Peacock et al. (2019b) using a centrally located fixation cross, and b) from the current 649 
experiment using a peripherally located fixation cross with delayed trial start. Concentric circles are 650 
overlaid on each map to show the extent of central bias. The most inner circle has a radius of 100 651 
pixels and each circle increments the radius by 100 pixels. The second row visualizes the same heat 652 
maps in three dimensions. Heat maps are z-normalized to a common scale with black representing no 653 
fixations and white representing the highest density of fixations.  654 
 655 
Figure 5. Squared linear and semi-partial correlations by scene comparing meaning and image 656 
salience. Line plots show the (a, c) squared linear and (b, d) semi-partial correlations between the 657 
fixation density maps, meaning (red circles), and image salience (blue squares) using (a, b) center-658 
biased and (c, d) unbiased prediction maps. The scatter plots show the grand mean (black horizontal 659 
line), 95% confidence intervals (colored boxes), and 1 standard deviation (black vertical line), for 660 
meaning and image salience across all 20 scenes for each analysis.  661 
 662 
Figure 6. Ordinal fixation analysis comparing meaning and image salience. The line plots show (a, 663 
c) the squared linear and (b, d) semi-partial correlations between the fixation density maps, meaning 664 
(red circle), and image salience (blue square) as a function of fixation number collapsed across 665 
scenes using the (a, b) center-biased and (c, d) unbiased prediction maps. Error bars represent the 666 
standard error of the mean. 667 
 668 
Figure 7. Similarities between meaning/saliency maps and fixation densities. The similarity matrices 669 
(a) show the squared linear correlations between fixation densities and meaning/image salience maps 670 
for each scene combination. The difference matrices (b) show the difference between the correlations 671 
of fixation densities and meaning/saliency for the same scene and correlations of fixation densities 672 
and meaning/saliency from different scenes.  673 


